Power Systems Comparisons

Sandia National Laboratories
Intelligent Systems and Robotics Center

Barry Spletzer September 1999

Soldier Enhancement Constraints

- Better than dinner
- Weighs nothing
- Takes up no space
- Lasts forever
- Has enough power to leap tall buildings in a single bound
- Is faster than a speeding bullet
- Can't have it all

Many Potential Power Sources

- Pneumatic cylinders
- Internal combustion engines
- Elastic spring elements
- Flywheels
- Fuel cells
- Batteries
- Photovoltaics

System Comparison Basics

- Compare apples to apples pneumatic cylinders to fuel cells
- Consider mechanical energy production
- Consider mass of fuel storage, energy converter, and prime mover
- Power and energy are both important
- Comparisons on a per mass basis are most useful

Power System Components

System Type	Storage	Converter	Prime
			Mover
Pneumatic	Pressure	Cylinder	Cylinder
	vessel		
Internal	Fuel tank	Engine	Engine
combustion			
Elastic element	Elastic	Elastic	Elastic
	element	element	element
Flywheel	Flywheel	Flywheel	Flywheel
Fuel cell	Pressure	Cell stack	Electric
	vessel		motor
Battery	Battery cell	Electric	Electric
_		motor	motor
Photovoltaic	None	Photo cells	Electric
			motor

Ragone Plot for Battery Comparisons

Compressed Gas Analysis

- Adiabatic and isothermal expansion
- Noncondensing (3000 psi H₂) and liquid (1100 psi CO₂)
- Simple cylindrical tank ($s=100,000 \ psi, r=2.7 \ gm/cc)$
- Work extracted in cylinder actuator
- Actuator speed limited by application

Compressed Gas Results

Internal Combustion Analysis

- Thermal efficiency of 25%
- Specific weight of 1.5 lbs/hp
- Negligible fuel tank weight (<< fuel weight)

Spring/Flywheel Analysis

- Allowable stress: 200,000 psi
- Material density: 2.7 gm/cc
- Elastic modulus: 50 x 10⁶ psi
- Solid rotating disk
- Uniformly strained spring element

Combustion/Spring/Flywheel Results

Fuel Cell Analysis

- H-Power 50 and 190 watt, LANL with hydride storage
- Prime mover is electric motor at 200 Watt/kg

Fuel Cell Results

Battery Analysis

- BlueStar Li/MnO₂ 15Ah Pouch Cell
- Ultralife Li/MnO₂ 10Ah Cylindrical D-Cell
- SAFT Li/SOCI₂ spirally wound 12Ah D-cell
- Lithium-ion cylindrical battery
- Lithium-ion prismatic battery
- Bolder High-Power Lead Acid Battery
- Prime mover is electric motor at 200 Watt/kg

Battery Results

Specific Energy (Watt-hr/kg)

Results Summary

Conclusions

- Ragone plots provide a quick overview
- Multiple potential systems exist
- Specific needs can easily lie on the edge of technology
- If it wasn't tough, we would not be doing it

